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A theoretical investigation of the instability of a vortex ring to short azimuthal bending
waves is presented. The theory considers only the stability of a thin vortex ring with a
core of constant vorticity (constant §/r) in an ideal fluid. Both the mean flow and the
disturbance flow are found as an asymptotic solution in € = a/R, the ratio of core radius
to ring radius. Only termslinear in wave amplitude are retained in the stability analysis.
The solution to O(e?) is presented, although the details of the stability analysis are
carried through completely only for a special class of bending waves that are known to be
unstable on a line filament in the presence of strain (Tsai & Widnall 1976) and have been
identified in the simple model of Widnall, Bliss & Tsai (1974) as a likely mode of insta-
bility for the vortex ring: these occur at certain critical wavenumbers for which waves
on a line filament of the same vorticity distribution would not rotate (&, = 0). The ring
is found to be always unstable for at least the lowest two critical wavenumbers (ka = 2.5
and 4.35). The amplification rate and wavenumber predicted by the theory are found
to be in good agreement with available experimental results.

1 Current address: N.A.S.A. Ames Research Center, Moffett Field, California; U.S.A.
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274 SHEILA E. WIDNALL AND CHON-YIN TSAI

1. INTRODUGTION

There now exists a considerable body of experimental data that indicates that laminar vortex
rings at moderate Reynolds numbers are unstable to azimuthal bending waves around the peri-
meter. Figure 1, plate 1, taken from Widnall & Sullivan (1973), shows the general features of this
instability. To the casual observer of vortex rings, this may come as a surprise, since vortex rings
are generally considered to be one of the most stable and persistent flows in our common exper-
ience. In actual fact, vortex rings are stable only at low Reynolds numbers and apparently at high
Reynolds numbers when the vortex cores are fully turbulent.

Because of the work, both theoretical and experimental, done over the past few years, our
understanding of these flows goes well beyond the early statements of Kelvin, ‘the known pheno-
mena of ... smoke rings ... convinces ... us ... that the steady configuration ... is stable’ and
‘the vortex ring in an ideal fluid is indestructible’ (Thomson 1867), but falls far short of a complete
understanding of the behaviour of a vortex ring in a real fluid.

In our discussion of the stability of the vortex ring we will only mention but not attempt to deal
with the fact that so little is known about the process of generation and roll-up. At present the
vorticity distribution resulting from the formation processes cannot be predicted ; this distribution
is, of course, required for a complete analysis of the stability of a vortex ring. Whether all of the
experimental investigators who are making vortex rings by various processes are studying the
same flow is surely in doubt. Widnall & Sullivan (1973) presented the first measurements of the
vorticity distribution, within a particular ring, using an l.d.v.; Maxworthy (1976) has recently
reported similar measurements, but no theory exists to predict the vorticity distribution resulting
from a given process. Both of these experiments showed that vorticity is neither constant within
the ring nor confined within a core of small diameter, but it may be sufficiently concentrated so
that a small core of constant vorticity may be used as a model for the flow.

Atlow Reynolds numbers (say, below Re ~ 600 based on propagation velocity and ring radius),
stable vortex rings are formed (Maxworthy 1972). For higher Reynolds numbers, if the ring is
laminar after the process of generation and roll-up, unstable azimuthal waves develop and grow
until finite-amplitude breaking occurs. Out of this process, a turbulent vortex ring is formed
whose properties are not well understood. (See, however, Maxworthy (1976) for a recent experi-
mental study of the properties of this flow.) This turbulent vortex ring is apparently stable, where-
as a laminar ring of the same mean vorticity distribution would probably be unstable. Max-
worthy’s experiments also indicate that the turbulent vortex ring, under some conditions, has
axial velocities within the core, a feature that is not present in its laminar counterpart. The effects
of these axial flows on the stability of the vortex ring are not currently understood.

The by-now-well-established phenomenon of azimuthal wave instabilities on vortex rings was
described qualitatively by Maxworthy (1972) in a paper concerned primarily with the structure
of stable (low Re) rings. This phenomenon was characterized quantitatively in the experiments of
Widnall & Sullivan (1973) in which measurements were made of the vorticity distribution, the
self-induced velocity and circulation, and the amplification rate for several different rings. A
complete set of measurements was obtained only for the fattest ring studied. Both of these works
were preceded by the flow visualization studies of Krutzsch (1939) whose photographs of un-
stable azimuthal waviness had evidently been overlooked or unappreciated, since there was
apparently no follow-up to his observations.
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Ficure 1. Flow visualization of the vortex ring instability; » = 7. Taken from Widnall & Sullivan (1973).
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Although the first theoretical attempt to explain the observed instability was that of Widnall
& Sullivan (1973), the related work of Kelvin (Thomson 1867), J.J. Thomson (1883) and others
was directed towards proving the stability of the vortex ring and calculating its frequencies of
vibration in order to lay the foundation for the vortex theory of atomic structure. While we do not
intend to review this early work to illuminate the differences between the analysis that led to
different conclusions for what is, after all, the same problem (the vibrations of a thin vortex ring
with constant vorticity), we shall show in our analysis that the proper treatment of the internal
structure of the flow within the vortex core due to the bending waves is crucial to the stability
analysis. Thus, neither the analysis of J. J. Thomson (1883) (whose model is not adequate to
include internal structure) nor that of Pockington (1895) (who considered the vibrations of a
hollow vortex ring which has no fluid in the core) predicts the observed instability.

The theoretical analysis of Widnall & Sullivan (1973) was based on the previous work of Wid-
nall, Bliss & Zalay (1971) in which a general asymptotic analysis was presented to predict the
self-induced motion of a slender vortex filament with an arbitrary distribution of vorticity and
axial velocity within the core. This theory requires that changes along the filament be negligible
in comparison to changes over the cross-section of the core; this is valid only if the wavelength of
the perturbations is large in comparison with the radius of the vortex core. This approach is
successful in predicting the long-wave instability of a vortex pair where the wavelength is about
eight times the spacing between the filaments and allows the effects of non-uniform distributions
of vorticity to be easily incorporated into the stability analysis (Widnall et al. 1971).

Widnall & Sullivan (1973) applied this analysis to study the stability of azimuthal waves on a
vortex ring. Unfortunately, the instability predicted by this long-wave analysis occurs at a wave-
length that is too short for the analysis to be valid. However, this theoretical work was revealing in
two important respects: the prediction that the vortex ring was unstable at the wavenumber for
which the asymptotic analysis spuriously predicts that a sinusoidally perturbed line filament
would have zero self-induced rotation (w, = 0) provided a significant clue to the physical
mechanism responsible for the instability; and the agreement of this theory with the general
features of the instability, the amplification rate and the increase in azimuthal wavenumbers with
decreasing core size indicated that the instability could likely be predicted by an inviscid analysis
of the sinusoidal bending perturbations of a slender vortex ring without the need to incorporate
more complex features of the flow. For example, an early explanation of the instability (Max-
worthy 1972) attributed it to vorticity of the opposite sign swept into the core during the rollup
process.

In 1974, Widnall ef al. presented a physically plausible but not mathematically rigorous argu-
ment that bending waves on a vortex filament would be unstable in the presence of a straining
flow (such as that of the ring mean velocity field itself) whenever these waves had no self-induced
rotation (w, = 0). The first radial modes of bending of a filament do not, in general, have the
property that w, = 0 for some value of wavenumber but the second radial mode, in which the
centre moves in a direction opposite to the boundary of the core, does have w, = 0for some critical
wavenumber k, = ka, as do the higher radial modes which have w, = 0 for yet higher values of
K, = ka. In Widnall ef al. (1974) these critical values of wavenumber are calculated for two
different vortex cores: constant and distributed vorticity. The instability of these waves in the
presence of the mean strain field of the ring is then considered. This analysis is not rigorous in that
the effects of ring curvature are not considered and the displaced vortex core is assumed to move
with the local free stream at each section of the wave — an assumption not valid for short waves.

34-2
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276 SHEILA E.WIDNALL AND CHON-YIN TSAI

Despite these shortcomings, the predictions of the model agreed very well with experiment. In
principle, any distribution of vorticity within the core could be considered in this model although
the results indicated only a slight sensitivity to the details of the vorticity distribution.

In the present paper we present the complete analysis for the instability of a thin vortex ring as
an asymptotic analysis in ¢, the ratio of core size to ring radius. The mathematical structure of this
analysis is that of an asymptotic stability problem in which the corrections to the eigenvalues at
higher order are determined by solvability conditions and the removal of secular behaviour in a
manner very similar to techniques of nonlinear stability analysis. In this case our expansion
parameter is not the amplitude of the disturbance, but the small parameter ¢ in which the mean
flow field of the ring is obtained as an asymptotic solution. The solution technique can be form-
ulated for a thin ring of arbitrary vorticity (containing axial flows, if desired) but due to the
complexities of the analysis, we here consider only vortex cores that to lowest order in ¢ have
constant vorticity.

In related work motivated by the instability of the vortex ring both Moore & Saffman (1975)
and Tsai & Widnall (1976) have considered the stability of a straight vortex filament in a weak
strain field by expanding the perturbation solution in a small parameter ¢, the ratio of strain to
vorticity. Both analyses derive a necessary, but not sufficient, condition for instability that (in the
case of a vortex filament without axial flow) is satisfied at several wavenumber—frequency combi-
nations including those wavenumbers for which w, = 0 on the line filament in an undisturbed
medium. Tsai & Widnall (1976) present calculations of amplification rate for a line filament
without axial flow at several of the wavenumber—frequency combinations which satisfy the
necessary condition for instability; the flow is unstable at some of these points, including all those
values of ka examined for which w, = 0. These critical waves are the higher radial modes of
bending on the filament that have no self-induced rotation; the vortex core does not move
uniformly in bending, but various radial stations move in opposition.

The stability problem for waves on a vortex ring is more similar to that for waves on a straight
filament than might be expected. As will be seen, the waves of interest for the vortex ring insta-
bility are short waves such that ke remains constant as ¢ -0 so that w, remains zero. Therefore
the wavenumber £ becomes large in the limit e— 0. In §3 we show that, as a result, the far-field
effects from waves around the ring are asymptotically small (as e~%/¢) as ¢—> 0. Thus, only the
local effects of curvature enter into the stability problem. This also means that any locally curved
filament should exhibit the same instability as the vortex ring.

Moore & Saffman (1975) also considered the effect of a small axial flow on the stability of aline
vortex in weak strain, concluding that the critical conditions now occur at finite ®,; since no
results are presented for amplification rate, it is not known whether axial flow stabilizes the in-
stability of a vortex filament in the presence of strain. Consideration of axial flow is also important
for the stability of the ring since there is some suggestion (Maxworthy 1976) that the finite-
amplitude wave breaking of the instability waves generate axial flows along the core of the ring
(it appears that these flows have no net axial momentum). Ifit were shown that these axial velo-
cities stabilize the bending-wave instabilities, we would come much closer to understanding why
avortex ring with a turbulent core is apparently stable. Unfortunately, such an analysis represents
a formidable and tedious task as can be verified by a glance at the remainder of this paper, in
which we consider only the simplest case, a vortex ring of constant vorticity with no axial flow.
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2. FORMULATION

We consider the linear instability of a thin vortex ring in an inviscid imcompressible flow. The
vorticity is taken to be uniform within a circular core of radius @ that is small in comparison to the
radius R; the small parameter ¢ is taken as the ratio a/R. This is, of course, an asymptotic des-
cription of the flow; actually, { = &, y across the core and the core does not remain circular to all
orders in €. An asymptotic solution in ¢ is presented both for the mean flow field of the ring and for
the behaviour of azimuthal bending-wave perturbations in this mean flow.

Er A/—

S

.\
] x ' . \
T~
1

y -

X

Ficure 2. Local curved cylindrical coordinates: y = 1 +e¢rsin0; x = ercos0;
s is the arc length around the ring aty = 1.

To analyse the flow in and near the vortex core we use the curved cylindrical coordinates used
by Bliss (1970), in which a vortex core of circular cross-section is the thin torus r = a centred on
the ring radius R. The coordinates are 7, @ and s, the arc length at » = R. When the coordinates
are scaled with the ring radius R and the  coordinates then scaled with ¢ so that » = 1 on the core
boundary, we obtain the coordinate system sketched in figure 2. The governing equations can be
obtained by standard techniques (Batchelor 1967) or can be obtained by inspection by rewriting
the governing equation in the x, y variables of the spherical coordinate system appropriate for the
ring in a local cylindrical system centred on the vortex core so that x = ¢rcos@ and y = 1+
ersin . (A similar coordinate system was used by Dean (1927) in his study of flow in curved
pipes.) In non-dimensional form, with I'/2ma chosen as the velocity scale and 2nR2?/I" chosen
as the time scale, governing equations for the flow in this curvilinear coordinate system become

U U VAU W U _V°_ cWesing _ 2P

ot E)r+7_a§+1+ersin¢9_6_s_m_r_1+ersin¢9=_E’ (2.1a)
W, GOV VWOV UV cWieosd _ 10P .15
TV T T Trersn0ds T 7 ltersmf . 1 o0’ 15)
%V_i_ M+ZW+——GW %V+GW(Usint9+Vcost9)_ —€ 91
ot or r 00 ' 1l-+ersinf Os 1 +ersinf " 1+ersinfos’ (2.16)
ou U 1oV € . ow
§+7+;5§+W(Us1n0+ VCOS@-i—W) = 0. (2.14d)
The potential flow outside the core satisfies Laplace’s equation in the form
B0 100, esind 00 100 ccos) 0 & @0
o2 "y Or  1l+ersin@ or 72002 r(1+ersin0)60+(1+ersin0)26s2- - (21

U, V, W, P and @ are, respectively, the radial, swirl and axial velocity components, and the
pressure and velocity potential outside the core.
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278 SHEILA E. WIDNALL AND CHON-YIN TSAI

We formulate the problem by expanding both the steady-flow solution for the ring field, and the
unsteady wave perturbations in an asymptotic series in €; only terms linear in wave amplitude will
be considered.

For a vortex ring, the steady-flow asymptotic solution near the ring is of the form (Fraenkel

1972; Bliss 1973)
Q(r, 0) = Qo(r, 0) +¢Qy(r, 0) +6* In€ Quy(r, 0) +2Qu(r, 0) + ..., (2.2)

where Q is an extended vector that includes the velocity components U, V, W, the pressure P,
the velocity potential @ (for » > 1) and the shape of the core boundary r = O(0) = 1+ «(0)

Q(r, 0) = {U(r, ), V(r, 0), W(r, 6), P(r, 0), D(r, 6), O(0)). (2.30)

Q, is the solution for the flow field of a straight line filament (¢ = 0); Q,, Q,, and Q, are the
higher-order terms in the mean-flow solution that represent the various effects of the curvature
of the filament into a ring. For a straight line filament with constant vorticity and no axial

velocity
Q, = {0,7,0,12—1,0, 1}. (2.3b)

To obtain the disturbance equations for short waves, the arc length s is also scaled by ¢ and the
wave number is referred to core size a so that for short waves £ ~ O(1) ase —> 0. The disturbance
flow §(r, 0, t) due to waves on the ring, harmonic in time and azimuth, is then expanded in a
similar asymptotic series (without loss of generality, £ will be taken as positive)

‘1(% 0’ t) = q(r’ 0) ei(wt+ks) = {‘Io(r: 0) +€q1(7‘, 6) +62 Ine q12<r’ 6) +€2q2(7‘, 6)} ei(wt+k3)’ (2'4)

where q is the disturbance vector with components velocity, pressure, potential, and displace-
ment of the core boundary f(6) due to the disturbance.

q(r, 0) = {u(r, 0), v(r, 0), w(r, 0), n(r, 0), ¢(r, 0), /(0)}. (2.5)
The eigenfrequency o of the perturbations is also expanded as
0 = wy+ew,+e?ln € w,+ew,+.... (2.6)

In the remainder of the analysis, the O(e? In €) and O(e?) terms in the solution will be grouped
together. The behaviour of the €? In e terms themselves is of some interest and is later discussed.
To solve for the flow in and near the core, we will use the assumed form of solution (2.2), (2.4)
and (2.6) in the governing equations (2.1) in their linearized (small-amplitude) form. This pro-
cedure will lead to the set of equations governing each term in the asymptotic solution. It will be
seen that to obtain instability, the solution must be determined to O(e?).

In the region away from the core, this procedure, of course, cannot be followed since er is no
longer a small quantity. In this region, the flow satisfies the three-dimensional Laplace’s equation
in outer (unscaled by €) variables. Laplace’s equation does not separate in our convenient local
curvilinear coordinate system, but it does separate in the related toroidal coordinate system (.5, #,
) which can be chosen so that the core boundary is a coordinate surface § = constant, as sketched
in figure 3. Therefore, the solution well outside the core is found as an expansion in toroidal
functions.
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¢ = (S—cosy)t X 3 AnPr_1(S) eim cind, (2.7)
where AT = AT +cA™ + €2 In 4™y + 24T, + ...

and the limiting behaviour of this complete solution near the vortex core is derived for match-
ing with the local flow. This process is required to insure that all effects of the distant parts
of the vortex ring are included in the analysis. For the mean ring field (n = 0), the potential is
already available from Lamb (1945) and from Bliss (19773), who carried the asymptotic solution
for the flow near a vortex ring to O(e?).

Yy

y
s _\
—

X

F1cure 3. Coordinate curves § = constant and 9 = constant for the toroidal system: § is constant on tori coaxially
located about the x axis with cross-section centres that are not coincident but approach x = 0,y = 1asS§ - o0;
7 is constant on spheres centred along the x axis that pass through the pointy = 1, x = 0; ¥ is the azimuth
angle around the torus.

For the stability problem, ¢ is constructed to represent the disturbance potential due to n
waves on the filament and its limiting behaviour near the filament is then determined. This would
ensure that the effects of the waves on the distant parts of the filament are included in analysis
of the stability of a typical cross-section of the flow. This turns out to be unnecessary ; the analysis of
the behaviour of the full solution in toroidal functions shows that the effects of distant waves are
asymptotically small. The expansion of the full solution in toroidal functions as ¢ — 0 turns out to be
identical near the vortex ring to the local asymptotic solution of Laplace’s equation (2.1¢) in the
coordinate system of figure 2 with no additional far-field effects. The reasons for this will be more
fully discussed in § 3, since it is not generally true that there are no far-field effects due to waves on
vortex rings; it is true for the unstable waves because the product of their wavenumber with the
core size remains finite as € — 0; the waves become infinitesimally short in this limit and their
far-field effects are thus asymptotically small. The detailed solution of the outer potential flow in
toroidal functions and its asymptotic expansion into the coordinates of figure 2 appears in §3.

To obtain the linearized disturbance equations, we take the total flow field as the sum of the
mean flow and the disturbance field. Using the expansion of the steady flow field in and near the
core (2.2) with (2.3), the assumed form of the disturbance field (2.4) and (2.5), and the expansion
of the frequency (2.6) in the governing equations (2.1) and keeping only terms linear in distur-
bance amplitude, we obtain for r > 1

iwou+@£ —2v+a—ﬂ = e[— (iw1+9—ql-) uy— U, Oug V0 (-1-6—({1—-?5) vo]

6 or or Yor v \ro60 r
1A du, Viou, (13U, 2V,
. ‘(“"1%7)“1"’4%7‘7‘@‘5‘(7“@?‘7)”1 s
+€ +... .8a
(i 20 g Vedty_ (100,21, )
R R e T Vi e A
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. o 1om . 16V1 U n N vy V00,
1“’0””“57#;@—6{—(1“ ot )”O"(a—rﬁ)“o—Ula r@ﬁ]
( +E%+U v, %4_5) - % V]avl
e Y10 or TN T 700 (2.80)
€ +... .
—iw +la_V2+£2 — a_V2+I/g — % Vzavo
2Ty )T\ T )T e T
. w .o V1 0w, Ow,
1w0w+@+1lm—e[ (iwy 47 cos 0) wy— 0 Ua +1krs1n0770]
— (iw; +7cos 0) w, — Viaauél Uaawl+1/crsm07r1
+€2 | — (iwy+ U; sin 0 +V; cos 0 —r2sin 0 cos 0) w, +... (2.8¢)
V, 0w, MWy o) oy
——r~a—0——U2 3 —1kr%sin2 O,
Qu u 10 . o
6;+;+;55+1kw=e[—51n0u0—c0s0110+1krsm0wo]
o| —sin0Ou;, —cosOv, +ikrsin O w, ] p
+e [+rsin20uo+rsin0cos01)0—ikr2sin20w0 (2.84)
forr > 1
¢ 10 10% 0¢y cosOdpy ., .
F R e —k*p =¢| —sin HT——r—W—ZkrsmﬁqSO]
+69[—sin00¢1—¥g%—2k2rsin0¢1+rsin20%’
sm220 aaqzo + 3k%2sin2 0 ¢O] (2.8¢)

The various features of these equations will be discussed when the analysis is considered in more
detail. The boundary conditions are as follows:

(i) asr — oo, the perturbations match the full solution for waves on a vortex ring expressed in
toroidal functions.

(ii) atr = 0, the solution is non-singular.

(iii) at the edge of the vortex core, defined by r = (0, €) +f(t, 0, 5; ¢€), the perturbation
quantities satisfy the kinematic condition

D[r—0(0;¢) —f(t, 0, 5; €)]/Dt = 0. (2.9)

(iv) at the edge of the core, the pressure is continuous.
After linearization in amplitude f, the kinematic boundary condition becomes

af+i@_qgaj 1dOPD 2 dOD azfpf 14634 of _ 910
ot 620000 \@2dAohor @3 dh o6 o 02d0d0 o | (2.104)
of Vaf 1dOdV 1de ., U 1do.
atowt (6@5"@@17 a_)f 60" 7" =0 on (2.102)
and the condition for the pressure is found to be
o (L2000, 1O L () 200 Lo 2.11)
b=\ oot naw o\ o o dr 020000, _ep,0 (2.11;
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Because of the continuity of the mean-flow pressure and velocity along the core boundary

= 0(0), the terms proportional to f (and 97/d6) in equation (2.104) and (2.105) are equal and
are eliminated by subtraction in the final boundary condition for ¢ and 4. The term proportional
to_fin the pressure condition (2.11) is zero.

The boundary conditions at 7 = 1 are found by substituting @ = 1+a(0; €) and performing
a Taylor series expansion of the boundary conditions (2.10) and (2.11) about » = 1. The kine-
matic boundary conditions become

T I, [ o f— Vlafoj_Ul ]+[ o oYy Ly

a0~ 150+
of, U, 0f doc
—iwyfo—V, 26{} + ottt =Y ] (2.124)
o @gs_ 62550 a“0 doc2 a¢0

where a(0; €) = ea,(0) +€2ay(0) +....
The condition for pressure at 7 = 1 is

aqz 0B g OPRB T o sin00, o 00,08, 00,04,
1Y0™ 171 270

N TR 20 0 1 00 “or or 0 00

> 7 nat
+oc2(—-—;-——1aoa$°+ %—20—%‘;)] (2.13)

Since to lowest order, the mean flow field is that for a straight filament and the effects of curva-
ture can be seen to be absent in both the perturbation equations and the boundary conditions, it
follows that the disturbance field is that for waves on a straight filament, and o, is the corres-
ponding eigenfrequency for these waves. The higher-order solutions to the linearized stability
analysis determine the effects of the mean flow of the ring on the characteristics of these waves
including the changes in the disturbance flow field and the frequency. Whenever w has a negative
imaginary part, the flow is unstable. Values of w, = 0 will be shown to be possible points of
instability for the vortex ring. The analysis presented in this paper shows that w; = 0 and
verifies our earlier speculation that w,, and w, have numerical values such that the thin vortex
ring with constant vorticity is always unstable.

3. THE POTENTIAL FLOW SOLUTION FOR WAVES ON A VORTEX RING IN THE LIMIT
e—>0,ka ~ O(1)

In this section we show that there are no far-field effects from distant elements of the ring in the
limit ¢ — 0 and conclude that the inner potential equation (2.8¢) with boundary condition
¢ — 0 asr — 0 describes the flow for » > 1 for the unstable waves.

To construct the potential for the flow outside the vortex core due to waves on the ring, we
express the solution in the toroidal coordinates (S, #, {) of figure 3, chosen so that the vortex core
is a surface S = constant. The relations between the coordinates S, 7, the spherical coordinates
x, y, and the local curved cylindrical coordinates 7, 6, of figure 2 are given by

gsinyg (82—1)%
S'—cosy S'—cosy’

ercost = x = — 1L+ersind =y =gq (3.1)

’

where ¢ is the scale factor of the toroidal system (see Bateman, 1955).

35 Vol. 287. A.
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If ¢ is chosen as (1 —€2%), then the core boundary is the coordinate surface § = §, = 1/e.
The general form of the solution for a disturbance of n waves around the azimuth is

¢S, 7, ¥) = (S—cos )} X 3 ARPy_4(S) e einv, (2.7)

where Pp_1(S) is the associated Legendre function. A Legendre function of the second kind
@y 1s not allowed since it is singular along the x axis.

The coefficients A}y are determined by satisfying the boundary conditions on the edge of the
core. In general, since 9 # 0, it requires an infinite sum over the functions e to represent the
bending wave e+i’, However, in the limit ¢ — 0, it is possible to obtain an asymptotic expression
for the solution (2.7) which requires only a few terms since, in the limit ¢ - 0, the relation (3.1)
between 7, 6, and S, 5 can be expanded as

1 1/1 . -1 3r 1 3 r 1
~N e - — — —_ e — ) qIn2 2
S_er 2(72 1) sm0+e[873+ s T (873 3 47) sin 0]+0(e) (3.2)
and
€ 1 3 1\2 1 1 1\2
1 ~ - P —e2l (= ) —Z)n2 — _ 3
siny ~ cosf)+4(r+r)sm26 € [(S(H-r) 2)sm 0 cos S(H_r) cosﬁ]+0(e), (3.3)

cosy ~ sin0+% (r+r1) (1+cos20) +e? [(%3 (r+;1)2+ %) sin @ cos? 0] +0(€?). (3.4)
From (3.2)—(3.4), we can see that to lowest order, § ~ 1fer, sin 9 ~ —cos 6 and cos § ~ sin 6
so that only el would be required to represent the mode ei?; terms of the form e*1%7, etc., appear
at higher orders.
To obtain the expansion of (2.7) into 7, § coordinates, we also expand the associated Legendre
function Pj_(S).
The integral representation of this function is

P_4(S) oc (2= 1) f * (S + cosh £)-m-n—k(sinh ¢)2m dt (3.5)
0

while the integral representation for the Bessel functions, which are the solutions for the related
problem of waves on a straight filament, is

K, (x) oc am f O°° e-@eoshE(sinh ¢)2m s, (3.6)
The proper expansion of (3.5) is obtained for ¢ - 0 with £ ~ O(1). (The wave number has been
non-dimensionalized by core size a.) With this non-dimensionalization £/e = n, the number of
waves on the ring. In order to hold £ ~ O(1) as € - 0, we require z = kfe as € — 0, in other
words, the simultaneous limit of decreasing core size and increasing wavenumber.

If weset S = 1ferand n = ke, in (3.5) and take the limit ¢ — 0, we obtain (to lowest order),

Po_(S)ocrmtt | * (1 4er cosh ¢)-He(sinh £)2m dt,
é 0

Since lim (1 + €7 cosh #)=kle ~ e—kreosht PR ,(§) is related to K,,(kr) as

e—>0

lim P2_y (S) oc b f ¥ e-kreosht (sinh f)2m dtoc o1 K, (kr). (3.7)
0

e—>0
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To obtain an expression to O(e?), considerable additional manipulation is required. The final
result in this limit is (T'sai 1976)

e (e (@) o

where z=kr,
zd? (K d (K K
=z Dm 1) = (2m) - _Z2m
En 2dzz(zm) +(m+3) dz(zm) 2zm=1

2d (K, (m T\ & (K, (-2 . ) 42 (K,
Bl ) (5 12) 2w (z2) + ( + e 0 0 0) 5(32)

k_z gy 4 (Kn) (2,4 (L)) Ke
+2rl_2(m+§)d_z(zm)+(.§—§(m+§) (7‘,2 1)) Zm?

with v =r+e[3(1—72%)sin0] +€? [127 §8£+ %r‘* +%(;+2r—3r3) cos 20] + 0(e?)
and K,, are modified Bessel functions with argument z.

With equations (3.2), (3.3), (3.4) and (3.8) itis tedious but straightforward to express (2.7) asa
series solution in 7, 6, s involving Bessel functions K,, (k7). The most significant result of this ana-
lysis (Tsai 1976) is that to O(e?) the potential flow solution so obtained could have been obtained
directly from the solution of the potential flow equations in inner variables (equation (2.1¢));
i.e. there are no additional far-field effects (these would have shown up as Bessel functions
L, (kr) since far-field effects have to satisfy the homogeneous equation). To verify this, a similar
analysis was applied to the stability of the vortex pair for asymptotically short waves (k ~ 0(1)
ase — 0). Itis easy to see in this case that the far-field effects decay as e~*"/°,

Therefore, we shall not deal any further with the solution in toroidal coordinates but shall
return to the solution of the inner problem which contains all of the stability information.

4, THE MEAN FLOW FIELD OF THE VORTEX RING NEAR THE CORE

To begin the stability analysis, we must have available the mean flow field of the vortex ring to
O(e?). Although various features of this flow have been described by Fraenkel (1972) and Bliss
(1973), the complete velocity and pressure field have not been given to O(e?) in a form suitable
for our analysis. The solution for this flow is presented in this section. This solution is equivalent
to that given by Fraenkel (1972). His analysis constructed the stream function for constant
¢[r with the core boundary determined by an asymptotic mapping technique for small cores. Our
solution will be directly obtained by a perturbation expansion in € of the equations of motion and
boundary conditions. The reader may wish to skip directly to the results presented in equations
(4.22), (4.23), before going on to the stability analysis of § 5. However, understanding the proper-
ties of the mean flow is crucial to understanding the instability of the ring.

For a complete solution of the steady flow field of the vortex ring, the self-induced propagation
velocity could be expanded in an asymptotic series in € and determined along with the flow field.
However, from the work of Fraenkel (1972), the propagation velocity is already known to
0(e?) so that it will no¢ be taken as an unknown in our analysis. To O(e?) the non-dimensional,
self-induced propagation velocity of the vortex ring is

V=3 (m--z). (4.1)
35-2
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The problem is formulated in a coordinate system fixed in the ring so that the mean flow is
steady. For this stcady {low, the boundary conditions are obtained as follows:

(i) asr — oo, the solution matches asymptotically with the inner limit of the outer solution for
a thin vortex ring (Bliss 1973);
lim U(r,0) = e[(—%—}Inr)cos 0] +¢? [r(— §In§+ 3 lnr+—.1z-) sin20]

r— oo

and lim V(r, 6) =;+e[(—-§-+%lnr) sin0]+62[r(—-§ ln§+-§-lnr+—1—5-g)cos20] ;

r— 0

(ii) asr — 0, disturbancesarcrequired to be finite;

(iii) the kincmatic condition at the core boundary r = @(0) cxpanded about r = 1 (2.12)
relates the radial velocity U to the shape of the core;

(iv) thedynamic condition at the core boundaryr = @(0) cxpanded aboutr = 1 (2.13) relates
the pressure and velocity potential to the shape of the core.

When the assumed form of the velocity/pressure/potential/shape-change solution (2.2) is
substituted into the governing equation (2.1) and the boundary conditions (2.12) and (2.13), we
obtain the set of governing equations and boundary conditions for the various terms in (2.2).

To lowest order, the flow is just that of a straight line f{ilament. The leading term in the expan-
sion is a filament with constant vorticity without axial velocity; this solution is

{UOa %’ I/Vm Po> q)m 00} = {0’ 7, 0, %‘72_ 1, 0, 1}° (4'2)

The perturbation solution automatically incorporates the stretching of vortex lines to produce a
ring of ¢/r = constant at O(¢). At the next order, the governing cquations are for r < 1 (from
2.1a, b, d)

oy, 0P,
0 =
¢ al/l _ 1 a[)] B
20, +t28 =~ 0 (4.3)
(LA U1 101
> 57 ;@ —rcos0.
Introducing the stream function ¥, such that
1oy,
T
5 (4.4)
"= W _ r2sin 0
or
and eliminating the pressure from (4.3), we obtain for 7 < 1
02 10 102 .
and from (2.1¢) forr > 1
2P, 10D, 10*P,  cosf (4.6)

i treeE T
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With boundary conditions at 7 = 1

da
bi—gg% =0
0P, da;,
'E’-_’_aﬁ - O, (4.7)
oF, 0P,
hrag =a-%
and as 7 - o0 @, > —4r(}+1Inr) cos 0. (4.8)

The solution to this problem was given by Bliss (1970) as

{(J], V]a I/Via P]a ¢1a al(O)} = {g(l "72) cos 0: (— %+ 'Zirz) sin 0)

0, (—§r+%r%)sin0, (yr—3r'—4rlnr)cos0, 0}. (4.9)

This solution contains the lowest-order effects of ring curvature. Note that all flow quantities
depend upon sin @ or cos 6; physically, these terms represent the stretching of vorticity and the
cffects of conservation of mass as the vortex elements convect around the curved core axis. The
problem defined by (4.3) — (4.8) also allows an cigensolution which represents a uniform dis-
placement of the core boundary in the direction of propagation. However, since we are free to
centre the vortex with the coordinate system, this cigensolution may be omitted.

The solution to O(e?) is governed by the following equations for r < 1:

o,

Z)Pz_ ou, nou, V3
0 Pty = U Tt (4.104)
W 108 _ W, R, UY
Wetggtrag =~Ug, 7w (4.100)
U, U, 10V, . \
-57_+7+;5(7 = —U;sin0+r%sin0Ocos 0 —Vj cos 0. (4.10¢)

When the first-order solution (4.9) is substituted into the continuity equation, (4.10¢) becomes

aa_LZz+%2+;%—Ig= $r2sin 20. (4.11)

A strcam function ¥, is then introduced of the following form

10y,

2 = T

r 00
V, = %'#03 — 25r3cos 20 (4.12)

so that (4.11) is identically satisfied. From (4.104, b) and (4.12), wc obtain a single equation for
the stream function ¥,
Py 10Y, 1%,

AT r—a 72-@2— = 2’72COS 26. (4.13)
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For r > 1, the governing equation is [from (2.8¢)]

0*P, 100, 10*0, . 0D, cosfod, 0 50D  sin 2000,
T Ty T = S0 Tyt O g ()
Substituting ¢, from (4.9), we obtain
B0, 100, 100,
ar +7' ar -|'7.2 602 = (—gf +Z)Sll’l20. (4.15)
The boundary conditions are —
de
atr=1: Uz—ab—z=0,
0P, da,
=~ d =0, (4.16)
o 0P, _1(09, __E)(Dl‘
00 2\ or 00
at r—co: ¢2~>r2[——%1n6§+—1§—glnr+§§]sin2(9.
We assume a solution to (4.13) and (4.15) in the form
W, = 3 A, rmemd W, (r)sin20 (4.17)
m=— o
and D, = § B, rmeimd 4 @, (1) sin 26. (4.18)
m=— 0

From the governing equations (4.13), (4.15) and the boundary conditions (4.16), we deter-

mine that
4, = 0 forall m,l
(4.19)
B, =0 m#2, |
and that Dy = [§%r2 — i+ nr — % lng (r2— r"'2)] sin 20 (4.20)
and Y, = [(%g— In— 8) +— 16} cos 20. (4.21)

To this order, the mean flow field near the vortex core includes a straining flow (72 sin 26, etc.)
although, due to the presence of the logarithmic terms, this is not strictly a local two-dimensional
strain (or stagnation-point flow) but rather its analogue for small filament curvature.

We have now completed the analysis of the steady flow field in and near the curved vortex
filament (of constant vorticity) to O(e2). The complete solution is as follows —

forr < 1: U=e%(l—72)cos0+62[(%%—3ln8)r+ ]sin20+...,

8
V=7‘+€(-—-%+%7‘2)Sin0+€2[(%—5-—%1 8) 16](:052¢9+

r?
=51+ e(—8r+§r%) sin 0 + e[ Fr? — 1351t — 5 + (3% — F5r?) cos 207 ;
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forr > 1:

D =0+¢e({r—3r1—3rlnr)cosf
+ €2 [{Er? — 2 S+ Pt lnr — 3 lng (r2— ,—2)] sin 20+ .... (4.22)
The shape of the core boundary is slightly elliptical with
6=1 +62(—§-g+ %mg) cos 26. (4.23)

This expression agrees with the result of Fraenkel (1972) for the shape of the vortex core found
by a very different method and serves as a check on the structure of the mean flow presented in
(4.22).

The form of the mean flow field of the vortex ring reflects clearly the development of the solu-
tion as an asymptotic expansion in the curvature parameter ¢ = a/R. The zero-order solution is
that for a straight filament; to O(¢), the curvature introduces cos 6, sin 6 terms representing the
stretching of vorticity and the speeding and slowing of the local flow around the curved centreline;
the O(e?) terms introduce a local quasi-two-dimensional straining or stagnation-point flow
(sin 20, cos 26). To order (€2), the vortex core becomes slightly elliptical as does a line filament in a
weak straining flow (Moore & Saffman 1971). The straining flow is responsible for the instability
of bending waves on the vortex ring. Unfortunately, in order to obtain this instability, it is neces-
sary to carry the stability analysis to O(e2) to include the effects of both curvature and strain on
the waves.

5. AN OVERVIEW OF THE STABILITY ANALYSIS

We now outline the calculation of the stability of waves on the vortex ring. Since we are inter-
ested primarily in bending waves, only this mode of disturbance will be considered although the
stability of other waves such as bulge waves or waves which distort the shape of the vortex cross-
section could be considered by the same technique. In fact, because of the form of the pertur-
bation equations (2.8) and the mean flow solution (4.22), bulge modes and shape-change modes
appear to higher order, as will be seen.

In such a complex problem, it may be useful to have an overview of the major features of the
problem. Such an overview is given in this section, using an extended operator notation that we
shall refer to as a procedure. The actual details of the stability analysis appear in §§ 6-8.

From the results of § 4 (4.22), the mean flow can be written in the form

Q = Qu(r) +6(Qu(r) €19+ Qy(r) e71) +€2(Qq(r) e+ Qy(r) ™) + ..., (5.1)

where a bar denotes complex conjugate and where terms of O(e? In €) have been incorporated as
0(e?). In (5.1), Q is the extended mean flow field vector

Q={UV,W,P, o, 06} (5.2)
The disturbance flow is then expanded (as in (2.4)) as
§ = qelwHk — (g teq, +e2qy+...} ellotths, (5.3)

where ¢ is the extended perturbation vector ¢ = {«, v, w, p, ¢, f} and s is the arc length variable
scaled by e. Of course, we can only admit an integer number of waves on the ring, but for now &
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will be taken as a continuous variable. For a given £, we can always find a core size a such that an
integer number of waves of wavenumber £ can fit on the ring.
The frequency is also expanded as

W = Wy+Ewy + 2wyt ... (5.4)
If the lowest-order solution g, is assumed to be of the form
Qo = q4(r) +qhell +qle i+ qE il + g2 e 04 g3 €310+ FeB0y (5.5)

in the governing equations and boundary conditions, a sct of homogenecus eigenvaluc problems
is obtained for all of the various waves on a straight filament of constant vorticity. We shall
denote these problems by

A

Z3(wp; k) g8 = 0;

Ll k) qh = 0; Liwh;k)qh = 0;
L3053 k) g5 = 0; f2(w0,k)qg=o-
LY (w5 k) g3 = 0; L3(wh; k) G = 0;

where £ (w; k) is the sct of linear operations (the procedure) that generates the homogencous
solution to the eigenvalue problem of waves of type m (bulge waves, m = 0; bending waves,
m = 1; shape-change waves,m > 2) on a straight filament including solving the governing lincar
homogcneous differential equation both inside and outside the core and the associated lincar
homogeneous operation of ¢nforcing the boundary conditions at » = 1. The barred quantitics
simply refer to the cquivalent operations for the complex conjugate modes e~i™?, The procedure
Zr leads to the determination of the eigenfrequency wi* at the wavenumber £ for cach type of
wave but docs not determine the wave amplitude. For a vortex without axial flow, the dispersion

(5.6)

relation for the waves e~i™? is the reflexion of the dispersion relation for the waves ¢ (Moore &
Saffman 1975; Tsai & Widnall 1976) so that @t (k) = — wj'(k) for a given wave. (See, for example,
the dispersion relation for bending waves on a straight filament shown in figure 4.) In gencral, for
a given wavenumber £ and radial mode number, the eigenvalues wg* and g for the different
types of waves are not cqual. To study the stability of bending waves on the vortex ring, we pick a
wave of wavenumber £ and corresponding cigenfrequency w} and analyse the corrections to the
frequency due to the curvature and strain terms in the steady flow field of the ring. In general,
only one bending wave can exist at a given value of w, and k. However, an important cxception
occurs if w, is chosen at a crossing point @} = w}§ of the dispersion curves for the el? and ¢~1?
modes, at which both waves can cxist simultaneously at arbitrary amplitudes. Note that this
generally can occur only for different radial mode numbers for the ¢!? and ¢~1% modes, except
when @) = 0w} = 0. The condition @} = w} is a nccessary condition for the instability of a line
vortex in the presence of strain (Tsai & Widnall 1976) and, as we shall see, also leads to instability
in the cases we have cxamined for the vortex ring. In genecral, these particular w,, £ combinations
arc not simultaneously eigenvalues for the other possible waves on the vortex filament (bulge
waves and shape-change waves) and, although there may be vorticity distributions for which this
is a possibility, we shall not consider this case further. These w,, £ crossing points can be scen in
figure 4.

For bending waves, we choose w, as w§, dropping the identifying superscript. We shall examine
in detail only those points for which @} = w}, although the more general case can casily be
cxamined by setting q§ = 0 (if @} # o}, then @ = 0). This more general casc docs not lead
to instability.
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With this particular choice of w,, the zero-order disturbance flow is that of the two bending
waves g} e1? and g} e~17 that can exist simultaneously at arbitrary amplitudes on the line filament.

Because of the form of the mean flow and the lowest-order solution, to obtain the solution to
O(¢) we assume @, in the form

= @) + () e+ Gh(r) e+ g3 (r) 0+ GE(r) e+ R 0 gi et (5.T)

I I | I I I

AN

Wy |

Ficure 4. Curves of the dispersion relation for waves on a straight vortex filament with constant vorticity.
, ¢l mode; — — —, e~1% mode.

This form of solution with the governing linear equations and the associated linear boundary
conditions gives rise to a set of problems which differ in several crucial respects from those of (5.6).
These problems are denoted as follows:

L(w) 42 = N3(do; Qo)

L) @& = —iwy Ni(qo); Zh(wo) @t = —iwy Ni(qo);
Li(wo) ¢ = N340, d0);  Z3(w0) @ = Ni(do 90);
Lw) @ = N340, 00);  L3(@0) @ = Ni(Qo» 90)5
where the procedure £} () has the same meaning as in (5.6). The notation

L (w) 41" = N1'(q0)

36 Vol. 287. A,
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290 SHEILA E. WIDNALL AND CHON-YIN TSAI

is the modification of those operations when both the differential equation and the boundary
condition contain non-homogeneous terms with the indicated dependence on @3, ¢§ and ;. The
N’s are linear in g} and g}.

The major differences between (5.8) and (5.6) are the presence of these non-homogeneous
terms and the fact that the ‘eigenvalue’ w, that appears in the operations indicated by Z§*(w,)
is no longer unknown but is the w, for bending waves on a straight filament.

The implications of these differences for the various waves in g, are as follows:

(1) The bulge waves g} and the shape-change waves g% and g2 are no longer governed by an
eigenvalue problem, since, in general, w, # w) or g, the eigenvalues for these waves. The ampli-
tude and form of these waves is then completely determined in proportion to the amplitude of the
lowest-order bending waves g§ and g}.

(2) For the bending waves g}, and g}, we have a forced eigenvalue problem, since

— 1 . 731
Wy = Wy = Bg.

Because g} and @} are solutions to the homogeneous problem, we must enforce a solvability
condition on w, to remove secular behaviour. The correction to the frequency w, multiplies every
term in the forcing functions Ni(q,) and Ni(q,); the only way to ensure solvability is to require
w, = 0. This gives g and g} as the eigenmodes for bending waves on a straight filament.

(3) The higher shape change modes, eti™’ m > 3, are governed by a homogeneous problem
with the eigenvalue already determined as w§. Since this is, in general, not an eigenvalue for these
problems, the amplitude of these waves is zero to this order.

Proceeding on to O(e?), we are interested only in determining w,, the modification to the fre-
quency. In this problem, w, appears only in the governing equations and boundary conditions
for the bending waves ¢} ei? and g3} e~i’. The amplitude and form of g3 and @3 are determined by
the solution to the problems

Zis(@0) ¢t = Ga(0n G55 o> 90> 91, G1)
= Ny(w, 45, 45)
and Li5(w) G5 = Gao(ws, b, T6; 9% 93, )
= Ny(w,, g5, @)
Thatis, g3 and g3 are determined by the solution to a forced eigenvalue problem where the forcing

term contains the lower-order wave solutions and the frequency correction w,. Since ¢{ and g3,
@2 have already been determined as being linearly proportional to ¢§ and g,

Gz(wm q(1)> 6(1» q?’ q%s ‘ﬁ)

can be written as N,(w,, g}, q}). Since w, is the eigenvalue for bending waves, a solvability con-
dition must be envoked to remove secularity in g3. This condition determines w,. For the case
considered, w, is found to be negative imaginary; the flow is then unstable.

This procedure is very similar to non-linear stability analysis but our solution is an expansion
in ¢, the parameter governing the distortion of the mean flow of a line filament into the ring flow
field rather than an expansion in the amplitude of the wave disturbances. We have retained only
terms linear in amplitude in this analysis. The problem considered is the stability of a flow which
differs from that of the basic flow (the line filament) by an asymptotic solution in €, the ratio of
vortex-core size to radius of curvature. To include finite amplitude effects would require an expan-
sion in both ¢ and amplitude.
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In this paper, we consider only the possible instabilities at wavenumbers for which wy = 0 and
we will present numerical results for only the lowest two values of £ for which wy, = 0is an eigen-
value (these are the bending waves with the second and third radial displacement mode in which
the various radial stations of the core move in opposition). For a vortex without axial flow, all
wavenumbers for which w, = 0 satisfy the condition w§ = @} since in this case the dispersion
curves are related by a reflection (@ = — ).

We shall not consider the case £ = 0, w, = 0, a simple translation of the core. A line filament
in a strain would be unstable to this displacement. However, a vortex pair would not be unstable
to this mode nor is the ring unstable; growth of this mode requires an increase in the impulse of
the flow with time.

For the line vortex, in the presence of strain, the most unstable wave at finite £ is the second
radial bending mede, the first crossing of the dispersion curve at finite £ (Tsai & Widnall 1976).
For the vortex ring, good agreement has been obtained with the experimental observations of the
unstable wavenumber by applying the simple criterion w, = 0 and using the first finite wave
number £ for which this occurs (Widnall ¢/ al. 1974). Recent experiments by Maxworthy (1976)
have also indicated an instability at about twice this wavenumber. This could be the wave-
number for which the dispersion relation for the third radial bending mode crosses w, = 0
(k ~ 4.35, see figure 4) which occurs at a wavenumber roughly twice that of the second radial
mode.

6. THE LOWEST-ORDER SOLUTION: WAVES ON A STRAIGHT FILAMENT
WITH CONSTANT VORTICITY

To lowest order, the governing disturbance equations (2.8) and associated boundary condi-
tions (2.11, 2.13) are that for the linear homogeneous eigenvalue problem of waves on a straight
filament

. ou o
forr < 1 1w0u0+a—é’—2v0+-—a—r—° =0, (6.1q)
. 10m ,
iwy v+ 60+2°+ 600 0, (6.1b)
iwg w, + 60 +1MT0 =0, (6.1¢)
Qug , 4y 100,
ar+r aa+1kw0_0 (6.1d)
o 108y 13y o, _
forr > 1 2T 727)—0?_& Po=0 (6.1¢)
with boundary condition atr = 1
0
o 1w0f0—6j—;9 =0,
0dy . %
'—5_- —'1(1)0‘]%—50— = 0, (6.2)
0
Do+i0g o+ a%o =0

36-2
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292 SHEILA E. WIDNALL AND CHON-YIN TSAI

Although the solution to this problem is well known (Kelvin 1880), we carry it through to
introduce the notation and the procedure that will illuminate the structure of the higher-order
non-homogeneous problems. Although we are concerned primarily with the instability of bend-
ing waves, the structure of the problems for all wave types is of interest for the higher-order solu-
tions. We shall, therefore, assume a general solution to (6.1, 6.2) of the form

qO (73 0) = {um Vo> Wo, o, ¢0,.ﬁ)}
{ug" (r), 05" (r), wg' (r), 75" (), 5" (r), fo" } et

0

iMM8

SPRCAORAON R ACK AON S (6.3)

where the subscript 0 denotes the zero order-solution, the superscript m indicates the dependence
mf and the barred quantities are associated with the e=i™? dependence.

The equations for the flow inside the core (6.1a—d) can be manipulated into equations for the
pressure components of the assumed solutions (6.3), #§*(r) and 7g*(r). The equations governing
both the barred and unbarred components can be written

2y 1dap m .
2 g T () = m) ap = o, (6.4)

where (,,)2 = k2(4 — (wy £ m)?)[(wy £ m)? with the minus sign taken for (7,,)%
The solutions to (6.4) are
g = ,36" Jm(ﬂm 7‘),}
= Bgn Jm("?m 7’).
The remaining components of the disturbance vector ¢, can be found by operations on the

pressure. The details are set out in Tsai (1976). We shall introduce the following notation for the
solution

(6.5)

{uan’ v(’)n” w(r)n, ﬁgl} = {A:)n’ Bsn’ an’ ‘Dan} ﬁ‘r)n’ } (6 6)

{7’_‘(7)"3 g, Wy ﬁﬂn} = {Zﬁn, Bsn, C(r)n, D'(r)n} ng
to separate dependence on wave amplitude. The functions 4", By, etc., are operations on the
Bessel function J,,(7,,7), the solution (6.5) for the pressure; in particular, D" and D equal
J (M, 7) and J,,(7,, 7). These solutions can be obtained by standard techniques.

For the disturbance outside the core, the governing equation for the components of the assumed
form of ¢ (6.3) is

d2om  1dodm  [(m?2
dfz" +;~g—r"—— (—ﬁ+k2) ¢m =0 (6.7)

for both ¢ and ¢7. The solutions to these equations are

# = SFlk)) (65)
o = ap K, (kr).
With the assumed form of solution (6.3), the boundary conditions at » = 1 become
i(wg £m) fg" —ug* = 0, (6.9a)
uf' —dggt/dr = 0, (6.92)
g +1i(wy, £m) ¢ = 0. (6.9¢)
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The boundary conditions (6.95, ¢) are used to determine the relations between wave ampli-
tudes o and B§* and between &' and ; fi* and fg" can be determined separately from (6.9a).

This procedure gives two linear homogeneous algebraic equations relating of* and £g* for each
wave type. Using the notation «f' = Ay'A¢" introduced in (6.6), and the solution (6.5) for pressure
and (6.8) for velocity potential, we obtain (6.10) directly from (6.9, ¢). Written in matrix nota-
tion, the boundary conditions become

oo ity o) ] = (6.104)
[z Tl = (6.105)

where

Ap = —i[ = (0o +m) 1y Jo (1 7) + (0o —m) J1 (3, 7) [r][[(wg —m) (@ +3m)],oq  (6.100)
= _i[_ (wo_m) T Jo(lﬁm 1’) + (a)0+m) Jl(ﬁm 7’)/7’]/[((1)0 +m) (wo_ 3m)]r=1' (6‘10‘1)

(The wavenumber £ has been taken as positive.)

and

For a non-trivial solution of (6.10), the determinates must be zero. This requirement gives, of
course, the various dispersion relations for waves on a line filament. The eigenvalues 0§ and @§"
for which the determinates are zero are all real.

The roots of the dispersion relation for a vortex without axial flow for m = 1 are shown in
figure 4. From (6.4) and (6.10) it can be seen that the dispersion relation for the e~i™¢ waves can
be obtained by a reflexion of the dispersion relation for the ei™? waves about w§' = 0. For this
homogeneous problem, if v, is not equal to the eigenvalue of the determinant corresponding to
a particular wave, then the amplitude of this wave as determined by (6.10) is zero. In deter-
mining the higher-order solutions for waves on a curved filament (§§7, 8), we shall be solving
non- homogeneous equations with the same determinates as (6.10) for the wave amplitudes
offt, B, In that case, the wave amplitudes are easily determined whenever the determinate of
(6.10) is not zero. When the determinant is zero, a solvability condition must be applied. This
solvability condition determines the correction to the frequency of the wave due to curvature of
the filament.

The solution of (6.10) also determines the proportionality between of* and f§* and between
o and g for the ei™? and e~im? modes.

g =

]CK’( )ﬂo ) &(y)n —kK’( )ﬂO (6'11)

Having given the general solution to the homogeneous equations for waves on a straight
filament, we now restrict our consideration to the zero-order solution for the two possible
bending waves (et1? and e~1%) since we are interested primarily in the instability of bending waves
on the vortex ring. From (6.3), (6.5) and (6.8), the zero-order solution can be written

Qo = {20, Vo> Wo, Ty, Pos Jo}
= {Ao, Bo, Co, Do, Ev, Fy} €' + {4y, By, Co, Dy, oy o} By, (6.12)
where all symbols in (6.12) have previously been defined except for E,, E, which from (6.8) and
(6.11) equal
Ey = K,(kr)

Ly = K, (kr)

(6.13)

Gk TR (8
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294 SHEILA E. WINDALL AND CHON-YIN TSAI

The superscript 1 identifying the zero-order solution as a bending wave has been dropped
wherever possible. The dispersion relations for these modes are

— kK (k) 4, =0

i(wo+1) Ky(k)  Jy(my) (6.14)
. ) — kK3 () 4 |_,

i(wy—1) Ky (k)  J1(7)

with 4, 4, defined by (6.10¢, d). The roots of the dispersion relations for these bending waves are
shown in figure 4.

There are many possible modes of bending of a line filament. In addition to the bending mode
in which all radial stations of the core move in the same direction (the first radial mode), there are
an infinite number of higher modes in which the initially concentric stations of the core move in
opposition.

Ata general w,, £ point there are three possibilities: if the point does not lie on one of the disper-
sion curves, there is no solution to the homogeneous problem; if v, £ is on one of the dispersion
curves, the wave amplitude of that solution is arbitrary and the amplitude of the other wave is
zero; if w,, £ lies at an intersection point of the two families of dispersion relations, both waves can
simultaneously exist at arbitrary amplitudes. For a vortex line in the presence of strain, it is a
necessary but not sufficient condition for instability that w,, & for the isolated filament be located
at one of these crossings. The physical significance of these crossing points is that the eigenmodes
(ei? and e~1%) of the same wavenumber £ and frequency w, can be combined to produce a standing
wave displacement of the core boundary of constant angular orientation. If the crossing occurs at
w, = 0, this will be a steady displacement wave; if at finite w,, the boundary of the core will
oscillate as a standing wave of frequency w,, but the wave will not change its angular orientation.
(However, the unsteady flow inside the core will not have this character unless the two disturb-
ance mode shapes are identical within the core.)

Tolowest order, we have found the mode shape and frequencies of bending waves on the vortex
ring. Since this problem is identical to the homogeneous problem for waves on an isolated straight
filament, these waves are all stable.

We now continue to determine the first-order effects in e upon the frequency and mode shape
of these bending waves. We will refer often to the structure of the problem outlined in this section.

7. THE FIRST-ORDER SOLUTION: WAVES ON A CURVED FILAMENT

From (2.8), the governing disturbance equations for the O (e) effects of curvature on the bend-
ing waves ¢, are —

forr < 1:
. Ou om . oy Ou, Viou 190; 21
1‘“0”1+551—2”1+a71=‘(””1+Ff)”o‘Ufa‘f"f5ﬁ‘(;651‘7‘)”0’ (7.1q)
oy, 10m . 101, U o N v, Viov

g0y + 2+ aé Ta = (ot o (e et o
iwyw +ikm; = — (iwy +rcos 0) wy— % wy an°+ikrsin077 (7.1¢)

0 1+ aa 1= 1 0 r aa 1 0> J
a—u-l-+ +—1-@—1+ikw = —sin O uy — cos O vy + 1krsin O wy; (7.1d)

ot tree T 0 0 03 '
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forr > 1:

%¢py 104, 10%, ,, 0¢, cos08¢0_ -
—25}?+;§+;§_5?0—2._k¢1 —sin 0—~—T— 2k%r sin O¢h,, (7.1¢)

with the boundary conditions at r = 1,

of, oU,
iwy fr+ f _”1 —iw fo— 150% ]fo,
Uy _'ajé.'l =Y, (72)
. 09, 0
7r1+1a)0¢1+ 06, ‘1‘1)1¢0"a_01%-

The important features of these equations are as follows:

(1) They are non-homogeneous with forcing terms which are the product of the lower-order
solution g, from (6.12) and either the O(¢) mean flow (4.22) or w,.

(2) The governing equation for g; and the associated boundary conditions are identical to
those for the zero-order problem except for these non-homogeneous terms.

(3) Animportant difference between (6.1) and (7.1) is that o, is no longer an unknown eigen-
value to be determined in the solution; w, is a root of the dispersion relation for waves on a straight
filament.

(4) The unknown frequency w, appears in the non-homogeneous forcing terms.

Because of the f-dependence of both the mean flow and the lowest-order solution ¢, the govern-
ing equations and boundary conditions contain non-homogeneous terms with #-dependence 1,
etil) e£219, We therefore assume a solution of the following form for the extended disturbance

2(r), wi(r), m(r), 2(r),.f1}
r),v (r),w} r),ﬂl( ,¢%(r),f%}e10

vector

q] (7 0 {Zt]_ )>
1
1

+ {ui( (
+{@l(r), v1(r), wi(r), @i(r), Pi(r),f1} =10
+ {ud(r), v} (r), w3 (r), w3 (r), P3(r), 3} €10

+{@3(r), 03(r), w3 (r), W(r), B3 (r), f1} 21" (7.3)

Note that the subscript 1 refers to the first-order solution, the superscript m refers to the de-
pendence on mf and the barred quantities denote e~i™? dependence.

When this assumed form for q,(r, 0) is used in the governing equations (7.1) and boundary
conditions (7.2), the following set of equations are obtained for r < 1:

dm'

i(wy +m) u — 207" +— I 15

2up +i(wg £ m) O £t = FY,
r (7.4)

i(wg + m) W +ikn* = FJ',

%‘—;—+—+—v1 +ikw = Fiy
24m
forr > 1: ddle +:d£1 (Zl k2) » = Fm,
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296 SHEILA E. WIDNALL AND CHON-YIN TSAI
with boundary conditions at r = 1
i(woim>f{n—u{n = B,
uf' —dg/dr = 0, (7.5)
' +i(wy tm) ¢ = By,

where m takes values 0, 1, and 2 for the various modes in (7.3), and the minus sign in + is
to be used in the equation for any of the barred variables (%, , etc.). The forcing functions 7 (r)
and the non-homogeneous terms in the boundary condition can be obtained by the indicated
operations on the solution for g, in terms of Bessel functions and the mean flow solution, Q.

From § 3, we know that the appropriate boundary condition at 7 — cois that the homogeneous
solution goes to zero asr — o0.

The forcing terms in Fj* and the non-homogeneous terms in the boundary conditions, BY", are
linear in wave amplitude S, or B,. In addition, only those non-homogeneous terms associated with
the eti? waves contain w;; w; multiplies every non-homogeneous term in both the governing
equations and associated boundary conditions for these modes. Thus, F}(r) can be rewritten
as o, F}(r) with a corresponding change in the meaning of F}(r). B}(7.5) can likewise be redesig-
nated as w, B}. For r < 1, the governing equations (7.44-d) can be manipulated into non-
homogeneous equations for the pressure of the form

dz7® 1d#n° — —
ST 2O (gg)2md = T Bo—TO() By

dr? " r dr
d2r} 1dml [—1 ] .
TR T | = —io TH0) By
dx 1dwt -1, 1= . N
'd‘r?l"';'cﬁ"‘ _7"‘(771)2 i = —iwy Ti(7) By, (7.6)

d?7% 1da? [—4 |

= Trar —5 T (12)?| 7 = T35(r) Bo,
d272 1d72 [—4 _ o — —
—d—r—zl'l'; d—rl+ L'_rz—+(772)2 7t = T(r) Pos

where as before (7,,)2 or (7,,)2 = k2(4 — (0, +m)?)[(w, £ m)? with the minus sign taken for 7,,.
The notation T (r) f, has been introduced to show explicitly the dependence of the non-
homogeneous terms on wave amplitudes S, and f,.
For r > 1, the equations governing ¢7* become

2,40 0
'd;]._ﬁ'l-l_;%—k%g = RY(r) (Bo—Fo)

241 1 1 _
%%+;%—1— (72 +k2) ¢1 =0, for both ¢} and @}, (7.7)
&’y 1dd1_ (:4_ + kz) e {R% fo_ for ¢%}_

A T dr \r? —R2B, for @2

Again, the forcing terms are linearly proportional to wave amplitudes 8, and B,. The forcing
terms 779, RY, etc., contain Bessel functions and polynomials in 7; the forcing terms are, in general,
complex with various symmetries determined by the form of the lowest-order wave solutions and
the mean flow field.
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Although tedious, itis quite straightforward to obtain the solution to these equations. We shall,
therefore, omit the uninteresting analytical details that are required to solve this problem and
instead concentrate on the structure of the problem, the form of the solution and the major
conclusions that follow. We shall also present the numerical results of the amplification rate for
the particular case considered which is obtained by actually carrying out the solution in detail.
(The details of the solution are available in Tsai (1976).)

We now consider the solution only for the case w, = 0. As previously mentioned, this is the
very special case for which waves on a line filament will not rotate. By our previous work (Tsai &
Widnall 1976) we know that this condition satisfies the necessary condition for instability of a line
filament in the presence of strain. Also, since w, = 0 is a root of the dispersion relation and its
reflexion, at this condition both wave amplitudes 8, and B, are non-zero and arbitrary. This
particular case gives well defined symmetries to the solution. Form = 0 and m = 2, w, is not an
eigenvalue of the homogeneous form of the equations (7.6).

The solution to (7.6) consists of a homogeneous solution identical in form to (6.6) plus particu-
lar solutions linearly proportional to £, and f,. In general, this solution is of the form

o, o, i, n7, S} = {45, By, CF, D', Fg'} AT
+ {Um, V;n’ W{n, in)F;n}ﬂO (7‘8)
+ {U{n’ —in: W?: —;’ln> F{n} BO)
where U?..., Up... denote the particular solutions from the non-homogeneous terms propor-
tional to B, and f,, and A4g’, etc., are the solutions to the homogeneous equation, which therefore
have the same meaning as in equation (6.6).

We can write a more specific form for the particular solutions in (7.8) by taking advantage of

the symmetries of the particular solution for @, = 0 and the fact that each equation in (7.6) does

not contain both g, and j,.
Specifically, the particular solutions are

{ud, 01, wl, m3}, = {UY, V3, W3, 119} B+ {U3, — V3, W1, — 111} By,
{ud, vi, wi, mi}y, = 0 {UL, Vi, W1, 111} B,
{@1, 01, w1, M}y, = 0, {UL, — Vi, Wi, =111} B, (7.9)
{u%, v%a w%) 77%}17 = {U%a V?; W%: H%} ﬂO)
{#%, 0%, wt, 7}, = {UL, — VL, W1, 113} By,
where the solutions UY, etc., are functions of r obtained by finding the particular solution to the
equations (7.6) for the pressure and from this determining the other components of the distur-
bance field. Again, we shall not give the explicit forms for these solutions since they can be ob-
tained by standard techniques.

What is significant are the symmetries in the solutions, the linear dependence on £, and f, and
the fact that the particular solution for {ui...} (or {#f...}) is linear in w, and depends only on £,
(or Bo)-

Similarly, the solution to (7.7) is of the form

# = o Ky(lr) + Gol by = o),
o1 = dK,(kr); B =k Kylh), (7.10)
$2 = a3 Ky(kr) + G, By; ¢ = a3 Ky(kr) — Gy By,

where ¢7* - 0 at 7 — co.

37 Vol. 287. A.
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When the solutions (7.8) [with (7.9)] and (7.10) are substituted into the boundary conditions
(7.54, ¢), we obtain two non-homogeneous linear algebraic equations relating «* and S and
relating af* and B7" for each m. These equations are analogous to equation (6.10) for the related
homogeneous eigenvalue problems for waves on the straight filament.

Even though we have chosen w, = 0, we will write these equations in the form of (6.10) to
illuminate the structure of the problem.

Form = 2 we have

i it T |1l = L) o (T.110)
e R Y I A (7.110)

where the non-homogeneous terms @7 and R?* come both from the particular solution evaluated
at7 = 1 and from the non-homogeneous terms in the boundary conditions. Again, these terms
involve various Bessel functions and polynomials in 7 and are straightforward but tedious to
obtain. For m = 2, the determinants of (7.11) are not zero when w, = 0, since w, = 0 is not an
eigenvalue for this value of k. Therefore, o3, #2and a2, B} are simply found and are linearly propor-
tional to B, and S, (which at this point are still arbitrary).

Form = 0, w, = 0is not an eigenvalue but there is a degeneracy in the equations, which must
be treated with care. For w, = 0, the dependence on the m = 0 (bulge) wave amplitude on the
lowest-order bending wave amplitudes f, and j, is of the form

= BPo—PBo); A = By~ Po)

where %9 and 279 are functions of % only, involving Bessel functions.
The dependence of the m = 2 (shape-change) wave amplitudes are of the form —

for dependence €2i%: =P Bo; od = A3 fy;
and for dependence e~2i¢: By =+ BBy @i =+ By,

where #% and /% are also functions of £ only, involving Bessel functions.

These solutions show that, although to lowest order we are considering bending waves on the
vortex ring, the actual form of the waves involves both bulge modes and shape changes at O(¢) due
to the effects of curvature. The amplitudes of these induced waves are proportional to the ampli-
tudes of the bending waves f§, and j,.

For m = 1, we have a very different problem. The equation governing the amplitudes of the
O(e) bending waves is

iﬂfﬁ%)&(k) Al( ) {ﬂl} P I{Ql} (7.12)

’ — kK (k) A3
i(wo—1) Ky(k)  Ji(71)

] =)

The determinants of (7.12) are exactly those for the homogeneous problem of bending waves on
a straight filament (6.14), and are both equal to zero since w, was chosen as the eigenvalue for
both the ei? and e~1 modes. The unknown correction to the frequency w; multiplies the non-
homogeneous terms. In general, the solvability of an equation with a zero determinant requires
that the forcing terms be orthogonal to the solution of the adjoint homogeneous problem. The
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general solvability condition is applied in Section 8 where the solution to O(e?) is considered. For
(7.12) to have a solution, this condition requires that w, = 0. Forw, = 0, A} and p} are arbitrary
and B, and B, remain arbitrary.

Thus, to O(e), we have determined the following:

(1) The correction to the frequency w, is zero; there is no destabilizing effect to this order.

(2) Bulge waves and shape-change waves proportional to the bending wave amplitudes are
induced by the effects of curvature.

8. THE SOLUTION TO SECOND ORDER: THE INSTABILITY OF WAVES ON THE RING

The governing disturbance equations for the O(e2) effects of curvature on the bending waves ¢
are obtained from (2.8). The O(e?) non-homogeneous terms in (2.84, ..., ¢) will be denoted by
F,i=1,5-

forr < 1: iw0u2+%%2—2v2+@§:- = F, (8.1a)
vy 10m,
1“)0”2+60+2 et s 39 = I (8.10)
1wy wy + 80 +ikmy = Fy, (8.1¢)
Ou, u, 100 ‘
a—f+ 24 a;+1kw2 = F; (8.1d)
0%, 10¢ 02,
forr > 1: Vj'l‘;—a?_(;z ae;+k2¢2) F, <8.le)
with boundary conditions at 7 = 1:

. ) 9 . au de

Wofé"‘% —iwyfi— f]‘l'“a“' 1~ 10y fo— Vza];o 2fo -2 d02 o (8.24)
6¢2_ @y Ouy) | doy 6¢0
“2_37_“2(W"§)+d0( 20t ) (8.26)
0 sin 60 . 09,0 09,0
ko g = iy gy e

+a2(——%’ Oaa?i°+2aa%° 20%0) (8.2¢)

The problem to this order is considerably more complex, but there are several important
features worth noting:

(1) Again at this order, the operators on the second-order solution g, in both the governing
equation (8.1) and the related boundary conditions (8.2) are identical to the homogeneous
operators for the free bending waves q,. Also, w, has already been identified as an eigenvalue for
the homogeneous problem.

(2) The non-homogeneous terms are of three types: products of the bending waves g,(e+i?)
with the mean flow at O(e?) which is a straining field (e£2i?); products of the modified waves
q,(1, e£if, e+210) with the O(e) mean flow of the ring (e£i); and the product of the unknown
frequency w, with g (et1?).

37-2
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(3) The forcing terms are all linearly proportional to the bending-wave amplitudes £, and f,
except for ¢, which contains bending waves of arbitrary amplitude f] (and 7).

(4) Itis possible to separate the forcing terms into those due to curvature and those due to
strain in the following way: those terms which would be present in the related problem of the
stability of a line filament in the strain field of the ring Q, are assigned to the effects of strain
(Tsai & Widnall, 19776) ; all other terms are assigned to the effects of curvature. These terms are
(a) the products of g, with Q, and (4) all non-homogeneous terms in the continuity equation
(8.1d, e) which is a homogeneous equation in the problem of a line filament in strain. This separa-
tion is not physically realizable in that the strain field of the ring is not governed by two-dimen-
sional equations; it does, however, display certain symmetries and may help in the understanding
of the instability mechanism.

At this point, we are interested only in determining w,, the O(e?) correction to the frequency. If
(as we shall see) w, has a negative imaginary part, the flow is unstable. Furthermore, we have
specialized the analysis to consider the stability only of those bending waves which will be station-
ary on the line filament (w, = 0). w, appears only in those non-homogeneous terms that are
proportional to A, ei’ and f, ¢~i%. Thus, to determine w,, we need only solve the non-homo-
geneous problem for waves of the form

g = el +qpet’. (8.3)

The lower-order wave solutions (to O(e)) have 0-dependence g, ~ e’ and q; ~ 1, etif,
e+2i0; the mean flow to O(e2) has 0-dependence Q ~ 1, e*i? e+i20, Thus, there are many combina-
tions of products of wave solutions with the mean flow that will contribute to the non-homo-
geneous terms with dependence et1?. These terms can be separated and assigned to strain and
curvature as previously discussed.

As before, the governing equations for r < 1 can be manipulated into equations for the pressure
of the form

d¥my 1dmd =« —
ety g e T (m)Pm = By [ —w Pi+ PS] + By [H5 + H],
. (8.4)
a2y dar 2T (711)27% = By [wa P8+ PS] + fy [HS + H3),
where the notation used for the non-homogeneous terms indicates (i) the dependence on wave
amplitude g, and f,, (i) the dependence on curvature (superscript c) or strain (superscript s)
and (iii) the dependence on the unknown correction to the frequency w,. The functions P§, P§,
H§ and H§ are complicated functions of £ and 7 involving Bessel functions.

The solutions for 77} and the velocity #} (which appear in the boundary conditions) are of the

form my = Ji(n17) B3+ By [—wa mi+7S] + o [3(234‘3(,3],} (8.5)
7y = Jy(717) Ba+ Bo [we ms+ 18] + By [Z5+ 2] .

and up = {0 B+ By [wy 25+ 28] + 5, [.T'§+I"§],} (8.6)
iy = Ay B3+ Py [0y Q35— Q51— B, [T5+ T3] .

The solution for the velocity potential outside the vortex core is directly obtained from the
solution to (8.1¢) for the e*1? modes.

B3 = Ky(kr) ag+ By G5+ f, Hg,}

Bt = Ky(kr) 3 — By G5 — By H5. (8.7)
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The particular solution for the velocity potential is assigned to the effects of curvature since for a
line filament in strain, the potential equation is homogeneous. As previously discussed (§3), the
velocity potential near the core to O(e2) can be obtained by a direct expansion of the external
potential solution for waves on a ring expressed in toroidal functions. This has been done and the
result is identical to O(€2) to the solution of the near field equation (8.1¢). Thus, (8.7) represents
the complete potential solution near the core to O(¢2). Relations between unknown amplitudes of
the homogeneous solutionsin A} and o} (and between f3 and &@;) are found by satisfying the bound-
ary conditions (8.25, ¢) which for the ¢+’ modes become

dg} _ oy (A da ) o
1 %o (AP dUg 71, 51
Uy — df ( dr2 df +10‘2( 1¢0 +v0): .
. D, g 7o . d
i+ +1) 2————w2¢o+%¢2+g%—~dd—%+@g¢a+f‘;—2[—%’—’;——m 042 s
241 8.8
and  a}— C:lq:z az(%%’—%)—la2(—1¢0+v},),
PR .y e 1dP,del . o dmy .
iy 1) B = —iog 3 + 17~ St i, 8+ 22 S+ 1) S 20

where a, is the coefficient in a(f)) = €e2a, cos 20 (see (4.23)).
When the solutions (8.5), (8.6) and (8.7) are put into the boundary conditions (8.8), two linear
algebraic equations are obtained in the form

s Oxe i = dere A (8.90)
e o sl =leete 10 (5.9)

where the superscript s or ¢ denotes the effects of strain or curvature. The determinants of the
coefficients o, # and &}, B3 are identically the dispersion relations for waves on the line filament
(6.14) and are therefore both identically zero for the case we have considered (v, = 0). At this
point in the analysis, the wave amplitudes £, and f, which appear in the forcing functions are still
arbitrary. The correction to the frequency w, is still unknown.

Since the determinants of (8.94, b) are zero, a solvability condition must be enforced to obtain
a solution. One possibility would be to require f, and j, to be zero, but the more interesting
possibility is to apply the general solvability condition that the forcing terms are orthogonal to the
eigenvectors of the adjoint matrix. This condition will determine w, and the relation between
B, and fB,. (These steps in the analysis are analogous to those leading to (3.18) of Tsai & Widnall

1976.)
This condition can be written in the following form:
Wy A — A3 — A ] {/30}
=0, 8.10
0 el (8:10)
where A = —kK] d*+iK, o,

X = kK, ec +iK, be,

Ay = kKi(f5+/°) +iK (c®+¢°).
37-3
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In order to have a non-trivial solution for 8, and f,, the correction to the frequency w, must

o =-[(%)-(&)]--m-m (8.11)

where, as we shall see, y; and 7y, are real.

equal

Before presenting numerical results for v, and y,, we note that although In € has been treated as
0(1) in the analysis thus far, it is now of interest to show the explicit dependence on In e. It turns
out that only A; contains In ¢ from the effects of strain. We, therefore, write -

8
Vs =7 1ng+7§z+'}’§2 (8.12)

to show explicitly the effects of strain and curvature. Then, the unstable root w, can be written
1 S 8 C S 2 Cc) 2 %
Wy = —1 '}’311nz+’}’32+'}’32 —(79)?| . (8.13)

The flow will be unstable as long as w, has a negative imaginary part. In the limite — 0, In € will
dominate and the flow will be unstable.

The numerical results for two specific cases will be presented in §9 in comparison with experi-
mental results.

9. NUMERICAL RESULTS AND DISCUSSION

The amplification rate for the instability of bending waves on a vortex ring is given by (8.13).
This formula was derived for a core of constant vorticity without axial flow. For this case, the
bending waves which have w, = 0 have special significance in the stability analysis and only this
case has been investigated. The effects of strain and curvature have been separated by so grouping
the non-homogeneous forcing terms in the governing equations (§8) and following them through
the analysis.

Numerical results have been obtained for two cases: £ = 2.504 and £ = 4.35. These are crossing
points of the dispersion relations at w, = 0 for the second and third radial mode (see figure 4).

The numerical results for the quantities appearing in (8.13) for these two cases are given in
table 1. The results for these two wavenumbers are remarkably similar. The effects of curvature
are much smaller than that of strain (y§, is less than 15 %, of y5, and ¢ has negligible effect on w,).

TABLE 1. NUMERICAL VALUES FOR QUANTITIES APPEARING IN (8.13)

k=25 k= 4.35
Va1 0.428 0.427
Vaz\pe o oo —0.534 } _ : —0.521 } _
7§2}732 + 752 0.0788 0.4549 0.0957 0.48509
Y2 0.3367 0.3409

Itiis interesting to note that the O(In €) amplification rate y§, turns out to be three quarters
that for a line vortex in a two-dimensional straining flow (Widnall & Tsai 1976). This is because
the O(ln €) mean flow is a plane strain of magnitude £ and the O(In €) terms do not couple with
any of the terms arising from the scaled coordinates.

In dimensional form, the amplification rate of the instability is

o = (I'[2nR?) (w,). (9.1)
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It is convenient to use I'/4nR? as a non-dimensional time for the vortex ring rather than I'/2nR?,
which has been used up to now since it is convenient for the line filament; the amplification rate
non-dimensionalized by I'/4nR?is then
a = 2w,.

This choice of non-dimensional amplification rate is consistent with the previous works of Widnall
& Sullivan (1973) and Widnall et al. (1974).

For the second radial bending mode (¥ = 2.5) the non-dimensional amplification rate is then
(from (8.13) with numerical values from table 1)

@ = [(0.856 In (8/c) —0.9102)2 — 0.1138]%. (9.2)
For small ¢, the last term in negligible and
& ~ 0.856 In (8/c) —0.9102. (9.3)

Both (9.2) and (9.3) are positive for ¢ < 1.
The work of Widnall & Sullivan (1973) introduced the spatial amplification factor

a, = afV,

where ¥ is the propagation velocity of the vortex ring nondimensionalized by I'/4rR. For a thin
ring, V depends only upon the distribution of vorticity within the core. For constant vorticity

V =1n (8)) —%
so that the theoretical result for spatial amplification of the waves is

a, = 0.856—0.694/F. | (9.4)

It is most likely coincidental that this result turns out to be numerically close to the original
results presented by Widnall & Sullivan (1973) for the spatial amplification rate of the instability
of the vortex ring using the Biot-Savart law and the cut-off method.

The predictions of this analysis for the wavelength of the vortex ring instability are somewhat
indirect and may be stated as follows: The vortex ring is unstable to specific wavenumbers for
which waves on a line filament with the same vorticity distribution would be stationary (w, = 0).
These wavelengths are proportional to core size so that ka is a constant « for these waves. (k = 2.5,
4.35, etc., for constant vorticity; the first value is generally observed experimentally.) For a given
core size, a the wavelength A is then determined. If an integer number of these waves will fit on the
ring, the ring will be unstable to that number of waves. For a given ¢, n = «/e.

If the observed value n is used to diagnose the properties of the ring as in the experiments of
Maxworthy (1976), then ¥ = In (8n/«) —} and

a, = 0.856—15—(%. (9.5)

For the line filament in strain, and likely also for the ring, there is actually a small band of

wavenumbers centred on the critical wavenumber which will be amplified (Tsai & Widnall

1976). If these bands overlap slightly, the ring will always be unstable. The stability criterion

wy = 0 was used previously in Widnall et al. (1974) who obtained good agreement between the

measured and predicted number of waves in the instability of a given ring; figure 5 is reproduced
from their paper.
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The only measurements of an amplification rate are those of Sullvian (Widnall & Sullivan
1973). The difficulty of comparing the predictions of the theory with experimental results is
considerable. The only case for which the vorticity distribution, the circulation, the induced
velocity, the amplification rate and the number of waves in the unstable mode were measured
is that presented by Widnall & Sullivan (1973) (see also Sullivan, Widnall & Ezekiel (1973) for
the ring of figure 1 which displayed an instability at n = 7). The vorticity in the core was not
constant. This ring had a measured induced velocity of ¥ = 2.46 but had a ¥ = 3.01 as calcu-
lated from direct measurement of the vorticity distribution. This ring was quite fat, corresponding
roughly to ¢ = 0.3. The measured amplification rate for this ring was &, = 0.69. If ¥ from the
measured vorticity distribution is used in (9.4), then &, = 0.625;if V from the observed n is used,
then o, = 0.612.

T T T T T T T T T T T T T T T T T T T T 77
151 -
- —x=— + 0O e} —
- + 0 o -
10+ + O o) -
- +.0 o -
noo —x—+ 0 o -
- —— + 0 o -
- —x=+ 0 : o .
5 + O o .
L o .
- O -
- O —

1 N SN TSR NS N SO N (SN N AN TSN NN OSSO N U SO NS O A BN |

2.0 25 3.0 3.5 4.0
~ Vs
= TjanR

Ficure 5. Theoretical and experimental results for the value of ¥ for which a given mode 7 is unstable. 0] , Constant
vorticity k = 2.5; +, continuous vorticity k = 2.7; O, asymptotic long-wave result ¥ = 1.44; — X —, experi-
ment (Widnall & Sullivan 1973).

Thus, the theory is in reasonable agreement with experiment for both the number of waves
(Widnall ¢t al. 1974) and the amplification rate for the observed instability of the vortex ring.
There have been many other observations of this instability (see Maxworthy 1976), but no
additional complete measurements of the instability parameters have been reported.

The theory presented here is valid only for a thin vortex ring, of constant vorticity in an inviscid
flow. It shows that these vortex rings are unstable to a mode consisting of an integer number of
bending wavesof certain critical wavelengths proportional to core radius. Vortexringsare believed
to persist in two states that are not covered by this theory: at low Reynolds number and with a
turbulent core. At low Reynolds numbers, growth of the core with time could continually keep
the ring from remaining unstable to a given mode long enough to be noticeably amplified. The
self-preservation of the ring with a turbulent core remains a mystery. Maxworthy (1976) has
suggested that axial flows are created within the core and stabilize the ring, but since the theory
developed to date does not include the effects of axial velocity, no definitive statement can be
made about this possibility.


http://rsta.royalsocietypublishing.org/

\
A

.\

A
/=

-

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

2 ¥

A\
I
P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THIN VORTEX RING OF CONSTANT VORTICITY 305

This research was sponsored by the National Science Foundation under contract number
7414978-ENG.

REFERENCES

Batchelor, G. K. 1967 Introduction to fluid dynamics, pp. 598-600. Cambridge University Press.

Bateman, H. 1955 Higher trancendental functions, vol. 1, p. 173. California Institute of Technology.

Bliss,D. B. 1970 Thedynamics of curved rotational vortex lines. M..S. thesis, Massachusetts Institute of Technology.

Bliss, D. B. 1973 The dynamics of flows with high concentrations of vorticity. Ph.D. thesis, Massachusetts Institute
of Technology.

Dean, W. R. 1927 Note on the motion of a fluid in a curved pipe. Phil. Mag. 7, 208.

Fraenkel, L. E. 1972 Examples of steady vortex rings of small cross-section in an ideal fluid. J. Fluid Mech. 51,
119-135.

Kelvin, Lord 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155.

Krutzsch, C. H. 1939 Uber eine Experimentell beobachtete Erscheining an Werbelringen bei ehrer translatori-
schen Beivegung in Werklechin. Flussigheiter. Annin der Phys. 5, 497-523.

Lamb, Sir H. 1945 Hydrodynamics. New York: Dover.

Maxworthy, T. 1972 The structure and stability of vortex rings. J. Fluid Mech. 51, 15-32.

Maxworthy, T. 1976 Some experimental studies of vortex rings. Department of Aerospace and Mechanical
Engineering, University of Southern California, Los Angeles.

Moore, D. W. & Saffman, P. G. 1971 Structure of a line vortex in an imposed strain. Aircraft wake turbulence and
its detection, p. 339. New York: Plenum Press.

Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc.
Lond. A 346, 415-425.

Pockington, H. C. 1895 The complete system of the periods of a hollow vortex ring. Phil. Trans. R. Soc. Lond. 186,
603-619.

Sullivan, J. P., Widnall, S. E. & Ezekicl, S. 1973 A study of vortex rings using a laser-Doppler velocimeter.
AIAA J. 11, 1384-1389.

Thomson, J. J. 1883 A4 treatise on the motion of vortex rings. London: MacMillan.

Thomson, Sir W. 1867 On vortex atoms. Phil. Mag. 34, 15-24.

Tsai, C. Y. 1976 The short-wave instability of vortex rings and filaments. Ph.D. thesis, Massachusetts Institute of
Technology.

Tsai, C. Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally
imposed strain field. J. Fluid Mech. 73, 721-733.

Widnall, S. E., Bliss, D. B. & Tsai, C. Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66,
35-47.

Widnall, S. E., Bliss, D. B. & Zalay, A. 1971 Theoretical and experimental study of the stability of a vortex pair.
Aircraft wake turbulence and its detection, p. 305. New York: Plenum Press.

Widnall, S. E. & Sullivan, J. P. 1973 On the stability of vortex rings. Proc. R. Soc. Lond. A 332, 335-353.


http://rsta.royalsocietypublishing.org/

]
<>
olm
e
)= O
= O
=wu

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

'icure 1. Flow visualization of the vortex ring instability; » = 7. Taken from Widnall & Sullivan (1973).
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